Category: NLU

0

Cross-Domain NER using Cross-Domain Language Modeling

本文通过未标注文本引入语言建模任务来辅助 NER 领域自适应任务,使用参数生成网络建模跨领域和跨任务,分别得到任务向量和领域向量,实验证明在监督和无监督领域适应上都取得很好的效果。 paper: https://drive.google.com/open?id=1gb0lN7tp0-enXYj1OuLDLPoDGryLWkL_source: ACL 2019 long papercode: https://github.com/jiachenwestlake/Cross-Domain_NER

0

Slot-Gated Modeling for Joint Slot Filling and Intent Prediction

基于Attention的RNN模型在联合意图识别(ID)和槽位填充(SF)上实现最好性能(其ID和SF的attention权重独立)。本文提出slot gate结构,其关注于学习intent和slot attention向量之间的关系,通过全局优化获得更好的semantic frame。通过在ATIS和Snips数据集实验,相比于attention模型semantic frame准确率提升了4.2%。 paper linkcode link